Research in the News: Researchers make exciting discoveries in non-excitable cells

It has been 60 years since scientists discovered that sodium channels create the electrical impulses crucial to the function of nerve, brain, and heart cells — all of which are termed “excitable.” Now researchers at Yale and elsewhere are discovering that sodium channels also play key roles in so-called non-excitable cells.

It has been 60 years since scientists discovered that sodium channels create the electrical impulses crucial to the function of nerve, brain, and heart cells — all of which are termed “excitable.” Now researchers at Yale and elsewhere are discovering that sodium channels also play key roles in so-called non-excitable cells.

In the Oct. 16 issue of the journal Neuron, Yale neuroscientists Stephen Waxman and Joel Black review nearly a quarter-century of research that shows sodium channels in cells that do not transmit electrical impulses may nonetheless play a role in immune system function, migration of cells, neurodegenerative disease, and cancer.

“This insight has opened up new avenues of research in a variety of pathologies,” Waxman said.  

For instance, Waxman’s lab has begun to study the functional role of voltage-gated sodium channels in non-excitable glial cells within the spinal cord and brain. They are currently investigating whether sodium channels in these non-excitable cells may participate in the formation of glial scars, thereby inhibiting regeneration of nerve cells after traumatic injury to the spinal cord or brain.

To read more about these advances, visit the website.

Share this with Facebook Share this with X Share this with LinkedIn Share this with Email Print this

Media Contact

Bill Hathaway: william.hathaway@yale.edu, 203-432-1322